Abstract
The shift from conventional generation to renewable energy resources in an effort to reduce emissions has led to a rapid proliferation of renewable resources especially solar photovoltaic (PV) in power systems. More and more large-scale solar PV farms are expected to be integrated in the existing grids in the foreseeable future in compliance with the energy sector renewable portfolio standards (RPS) in different states and countries. The integration of large-scale solar PV into power systems, however, will necessitate a system upgrade by adding new dispatchable units and transmission lines. In this paper, a co-optimization generation and transmission planning model is proposed to maximize large-scale solar PV hosting capacity. The solution of this model further determines the optimal solar PV size and location, along with potential required PV energy curtailment. Numerical simulations study the proposed co-optimization planning problem with and without considering the solar PV integration and exhibit the effectiveness of the proposed model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical Power & Energy Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.