Abstract

In this paper, we have proposed an analytic model and determined the outage probability and average bit error rate (BER) performance of a co-operative radio frequency − underwater wireless optical communication (RF−UWOC) system. In recent years, UWOC has attracted attention as a useful enabler of underwater activities such as climate and ocean monitoring, surveillance, ocean exploration, underwater wireless optical sensor networks (UWOSN) and internet of underwater things (IoUT) because of its high speed, ease of deployability and wide bandwidth availability which is free of licensing fees. The proposed co-operative RF–UWOC system is designed to establish a connection between an underwater vehicle inside the ocean to a terrestrial ground station using decode−forward and amplify−forward relays. The RF link between the terrestrial ground station to relay is modeled as a Rayleigh distributed channel. The UWOC link between the relay to the underwater vehicle is modeled as being perturbed by the hyperbolic tangent log-normal (HTLN) distribution. To the best of our knowledge, it is for the first time that the perturbations due to weak oceanic turbulence have been modeled using HTLN distribution. This distribution is a member of the class of log-normal distributions derived from hyperbolic tangent distribution. Novel closed-form expressions have been derived for the outage probability and average BER for various modulation techniques that can be employed in this system. The analytical results are evaluated and validated with Monte-Carlo simulations in the presence and absence of pointing errors. The results show that the impact of pointing errors in the RF-UWOC system is to impose an additional SNR penalty of at-least 10 dB to obtain a BER of 10−6 when compared with the system operating without pointing errors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.