Abstract

Novel Co(OH)2/MXene-Ti3C2 nanocomposites with oxidase (OXD)-mimic, peroxidase (POD)-mimic, and catalase (CAT)-mimic activities were prepared by asimple two-step method. The Co(OH)2/MXene-Ti3C2 nanocomposites with triple-enzyme mimic activities were embedded into sodium alginate (SA) gels for the first time to fabricate a target-responsive hydrogel-assisted assay. The catalytic mechanism and steady-state kinetics of Co(OH)2/MXene-Ti3C2 nanocomposites were investigated. Subsequently, hypoxanthine (Hx) was catalyzed by xanthine oxidase (XOD) to form H2O2, which reacts with 3,3',5,5'-tetramethyl-benzidine (TMB) in the presence of Co(OH)2/MXene-Ti3C2 nanocomposites to form a blue oxide (ox-TMB) in the hydrogel. The visible color change of the hydrogel with the increase of Hx concentration can be recognized through a smartphone App to transfer the red (R), green (G), and blue (B) values for the quantitative determination of Hx, with adetection range from 5 to 250μM, and detection limit of0.2μM. Themethod was applied to the determination of Hx content in different aquatic products. The spiked recoveries of the aquatic products were from 94.1 to 106.4%, and the relative standard deviations (RSD) were less than 5.4%. Our results show that the Co(OH)2/MXene-Ti3C2 nanocomposites hydrogel-assisted colorimetric biosensor is cost-effective, sensitive, and selective andhas excellent application prospects forin-the-field determinationof Hx.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call