Abstract

The co-occurrence of high As and F concentrations in saline groundwater in arid and semi-arid regions has attracted considerable attention. However, the factors determining the elevated concentrations of the two elements in surface water in these regions have not been sufficiently studied, and their implications for the poor-quality of local groundwater (high levels of As, F, and salinity) are unknown. A total of 18 water samples were collected from Wuliangsu Lake, irrigation/drainage channels, and the Huanghe (i.e., Yellow River) in the Hetao Basin, China. The pH, concentrations of As and F as well as those of other major elements, and stable isotope (H and O) compositions were analyzed. The water samples had a high pH (7.85–9.01, mean 8.25) and high TDS (402–9778 mg/L, mean 1920 mg/L) values. In six of the 10 lake samples, As concentration was above 10 μg/L (maximum 69.1 μg/L) and, in one of them, F concentration was above 1.5 mg/L. Interestingly, the high As, F, and TDS values simultaneously detected in the lake water were similar to those previously reported in local groundwater, and all water samples showed a significant positive correlation between As and F concentrations (R2 = 0.96, p < 0.01), except for two samples with abnormally high Ca2+ levels. The results of stable isotope analysis and Cl/Br ratios suggested that the lake experienced strong evaporation, which is consistent with the high TDS values. Evaporative concentration is suggested as the main factor contributing to the elevated As and F concentrations in the lake water. In addition, the major ions (e.g., Na+, Cl−, HCO3−, and OH−) and pH in the lake water increased during evaporation, leading to desorption of As and F. Thus, the evaporation process, including evaporative concentration and desorption, was considered primarily responsible for the elevated As and F in the lake water. Based on the results of this study, we presume that the paleolakes in the study area have experienced intense evaporation process. As a result, As, F, and major elements accumulated in sediments (or residual lake water) and were buried in the fluvial basins; then, they were released into the groundwater through multiple (bio)hydrogeochemical processes. By combining the results of this study with those obtained from previous groundwater analyses, we propose a new hypothesis explaining the origin of elevated As and F concentrations in saline groundwater in arid and semi-arid regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call