Abstract

The coexistence of antibiotics with heavy metals is detrimental to humans and the environment. In urban water environments, Cadmium (Cd) and ciprofloxacin (CIP) frequently co-occur. Biogenic manganese oxides (BMOs) are a promising environmental bioremediation material due to their remarkable adsorption and oxidation properties. However, BMOs' removal mechanism in an environment where Cd and CIP co-occur is not yet unknown. We identified a manganese (Mn)-oxidising bacterium, Bacillus sp. XM02, with a strong ability for Mn (II) oxidation (85.23%) and BMOs production, and investigated its competitive removal mechanism in an environment with Cd and CIP co-occurrence. The BMOs exhibited a glorious CIP degradation ability and led to a marked decrease in the toxicity of CIP following oxidative degradation in Escherichia coli experiments. In contrast, in the co-existence of Cd and CIP, Cd hindered CIP removal by BMOs, but CIP did not affect Cd removal. Kinetic experiments combined with XPS characterisation revealed that the k value of Cd (297.39 h-1) was much higher than that of CIP (5.53 h-1), demonstrating that Cd was immediately adsorbed onto the surface of BMOs through a Cd-O bond. The surface potentials of BMOs carrying Cd alone and both Cd and CIP on the surface were similar, revealing that the electronegativity of Cd-carrying BMOs was greatly weakened (from -34.8 mV to -21 mV/-23 mV), which further reduced the BMOs' electrostatic interaction with CIP. Moreover, the concentration of dissolved Mn (III) in the co-existence group was lower than that in the CIP alone, indicating that the presence of Cd reduced the transformation of Mn (IV) to Mn (III) by BMOs. Consequently, Cd attenuated the effect of active Mn (IV) sites of BMOs on CIP's piperazine ring oxidative degradation. These results offer a theoretical direction for the use of BMOs to reduce the risk posed by antibiotics and heavy metals pollution in co-occurrence environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.