Abstract

Abstract Syngas is a desirable fuel for combustion in the Allam-Fetvedt cycle which involves combustion under supercritical-CO2 (sCO2) conditions. While some work has been conducted in collecting ignition delay times at the extreme pressures required by these systems, significant model deficiencies remain. Additionally, considerable barriers in terms of non-ideal gas dynamic effects have been shown for these experiments in shock tubes. Further investigation into the fundamental combustion kinetics of H2/CO/CO2 mixtures is required. Time-resolved speciation measurements for target species have been shown to better aid in improving the understanding of underlying chemical kinetics than global ignition delay time measurements. Therefore, laser absorption measurements of CO were collected behind reflected shock waves during combustion of syngas at 5 and 10 bar and temperatures between 1080 and 2100 K. The mixtures investigated utilized H2-to-CO ratios of 1:1 and 1:4, respectively, each at stoichiometric conditions, allowing for discussions of the effect of initial fuel composition. A ratio of fuel to CO2 of 1:2 was also utilized to represent commercially available syngas. The mixtures were highly diluted in helium and argon (20% He, 76.5% Ar) to minimize thermal effects and to expedite CO thermal relaxation during the experiment. The resulting CO time histories were then compared to modern chemical kinetics mechanisms, and disagreement is seen for this system which is assumed to be fairly well known. This study elucidates particular chemistry that needs improvement in moving toward a better understanding of syngas combustion at elevated pressures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.