Abstract

The combustion properties of a gasoline-like blend of pentene isomers were determined using multiple types of experimental measurements. The representative mixture (Mix A) is composed of 5.7% 1-pentene (1-C5H10), 39.4% 2-pentene (2-C5H10), 12.5% 2-methyl-1-butene (2M1B), and 42.4% 2-methyl-2-butene (2M2B) (% mol). Laminar flame speeds were measured at equivalence ratios of 0.7-1.5 in a constant-volume combustion chamber, and ignition delay times (including both OH* and CH* diagnostics) as well as CO time-history profiles were performed in shock tubes, in highly diluted mixtures (0.995 He/Ar), at a stoichiometric condition for temperatures ranging from 1350 to 1750 K, and at near-atmospheric pressure. Two additional unbalanced mixtures removing either 2M2B (Mix B) or 2-C5H10 (Mix C) were studied in a shock tube to collect CO time histories, representing the most stringent validation constraints, as these two pentenes constitute the biggest proportions in Mix A and exhibit opposite behaviors in terms of reactivity due to their chemical structure differences. Numerical predictions using a recent validated chemical kinetics mechanism encompassing all pentene isomers from Grégoire et al. ( Fuel2022, 323, 124223) are presented. The use of a complex blend of four pentene isomers in the present paper provided a capstone test of the current mechanism's ability to model pentene-isomer combustion chemistry, with very good results that reflect positively on the current state of the art in pentene isomer kinetics modeling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call