Abstract

In this study, a novel coordination polymer {Co2(Oaobtc)(bpe)(H2O)4]}n (1) was synthesized under hydrothermal conditions using a hybrid ligand synthesis method, where H4Oobtc represents 2,3,3'-tricarboxylate azobenzene, and bpe represents 1,2-bis(4-pyridyl)ethylene. The obtained CP1 was characterized by elemental analysis (EA), powder X-ray diffraction (PXRD), and thermal gravimetric analysis (TGA). Fluorescence testing confirmed the excellent photoluminescent performance of compound 1, indicating its potential as a cyan-emitting fluorescent material. Hyaluronic acid (HA) and carboxymethyl chitosan (CMCS) are natural polysaccharides known for their biocompatibility. HA/CMCS hydrogels were synthesized using a chemical synthesis method, featuring a three-dimensional network structure with interconnected pores, and an average pore size of 314.75 ± 11.25μm. The characterization of the taxotere-loaded hydrogel was performed using infrared spectroscopy, confirming the effective encapsulation of the drug within the hydrogel. Utilizing taxotere as a model drug, a novel taxotere-loaded metal gel was synthesized, and its anticancer efficacy was evaluated. Furthermore, the influence of different pH levels on drug release rate was investigated. Finally, the encapsulation and release of taxotere in the hydrogel were studied using UV-visible spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.