Abstract

In the current context of the increasing incidence of breast cancer, we aim to develop an efficient drug carrier for breast cancer by constructing an innovative complex consisting of a metal-organic framework (MOF) and a hydrogel. The aim of this initiative is to provide new ideas and tools for breast cancer treatment strategies through scientific research, so as to address the current challenges in breast cancer treatment. In the present study, by employment of a new Co(II)-based coordination polymer with the chemical formula of [Co(H2O)(CH3OH)L]n (1) (H2L = 5-(1H-tetrazol-5-yl)nicotinic acid) was solvothermally synthesized by reaction of Co(NO3)2·6H2O a mixed solvent of MeOH and water. The characteristics of ligand-based absorption and emission, as unveiled by ultraviolet and fluorescence spectroscopy tests, offer insights into the distinctive electronic transitions and structural features originating from the ligand in compound 1. Using natural polysaccharide hyaluronic acid (HA) and carboxymethyl chitosan (CMCS) as raw materials, HA/CMCS hydrogels were successfully prepared by chemical method and their internal morphology was studied by scanning electron microscopy. Using paclitaxel as a drug model, we further designed and synthesized a novel metal gel particle-loaded paclitaxel drug and evaluated its inhibitory effect on breast cancer cells. Finally, the hypothesized interactions between the complex and the receptor have been confirmed through molecular docking simulation, and multiple polar interactions have been verified, which further proves the potential anti-cancer capability and excellent bioactivity. Based on this, this composite material prepared from a novel Co(II)-coordinated polymer with paclitaxel hydrogel could provide a useful pathway for the identification and treatment of breast cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.