Abstract

AbstractSoliton frequency combs generated in microresonators offer powerful tools for optical metrology, due to the high time‐frequency resolution. Here, via exciting the intracavity Brillouin laser in a high Q monolithic fiber resonator, a pair of orthogonal Kerr soliton combs is generated, which share the same repetition (frep ≈ 1.001 GHz) due to the soliton trapping but different central wavelengths (≈ 9.278 GHz). They offer rich dual‐comb beat notes with minimum phase noise down to −166.5 dBc Hz−1@1 MHz. Thanks to the geometric flexibility of the monolithic fiber resonator, the orthogonal soliton pair is found to be mechanically controllable with high precision. Specifically, by applying external stress on the microcavity in a range of ≈ 0–7.33 mN, the difference of their carrier‐envelope‐offset frequencies (Δfceo) is linearly tunable with a response of 0.3 kHz µN−1, meanwhile, tunability of the frep reaches 0.4 kHz µN−1. Such an orthogonally polarized dual soliton with stress controllability combining Brillouin excitation and parametric oscillation can offer a miniature all‐in‐fiber tool for wide applications ranging from frequency‐adjustable photonic microwave sources to highly sensitive gyroscopes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.