Abstract
Phenotypic heterogeneity in bioprocesses is suspected to reduce performances, even in case of monoclonal cultures. Here, robustness of an engineered isopropanol-overproducing strain and heterogeneity of its plasmid expression level were evaluated in fed-batch cultures. Previously, eGFP was identified as a promising plasmid expression reporter for C. necator. Here, the behavior of 3 engineered strains (isopropanol overproducer, eGFP producer, and isopropanol/eGFP co-producers) was compared at the single-cell and population levels. Production yields and rates have been shown to be dependent on isopropanol/acetone tolerance. A link could be established between the variations in the fluorescence intensity distribution and isopropanol/acetone production using the eGFP-biosensor. Co-production of isopropanol and eGFP exhibited cumulative metabolic burden compared to single overexpression (isopropanol or eGFP). Expression of eGFP during isopropanol production resulted in lower isopropanol tolerance with a loss of membrane integrity resulting in protein leakage and reduced plasmid expression. The co-expression of heterologous isopropanol pathway and eGFP-biosensor enabled to demonstrate the heterogeneity of robustness and plasmid expression at the single cell level of C. necator. It highlighted the conflicting interactions between isopropanol overproduction and eGFP reporter system. Fluorescent reporter strains, a crucial tool for monitoring subpopulation heterogeneity although biases have to be considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.