Abstract
The function of a Bacteroidetes menaquinone biosynthetic pathway fusion protein comprised of an N-terminal haloacid dehalogenase (HAD) family domain and a C-terminal hotdog-fold family domain is described. Whereas the thioesterase domain efficiently catalyzes 1,4-dihydroxynapthoyl-CoA hydrolysis, an intermediate step in the menaquinone pathway, the HAD domain is devoid of catalytic activity. In some Bacteroidetes a homologous, catalytically active 1,4-dihydroxynapthoyl-CoA thioesterase replaces the fusion protein. Following the gene fusion event, sequence divergence resulted in a HAD domain that functions solely as the oligomerization domain of an otherwise inactive thioesterase domain.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.