Abstract

To reduce recurrence rate after transurethral resection of bladder tumor, long-term intravesical instillations of Bacillus Calmette-Guérin (BCG) and/or chemotherapeutic drugs is the standard treatment for non-muscle invasive bladder carcinoma. However, the main challenges of intravesical therapy, such as short retention time and poor permeability of drugs in the bladder, often require frequent and high-dose administrations, leading to significant adverse effects and financial burden for patients. Aiming at addressing these challenges, we developed a novel approach, in which the cell-penetrating peptide modified oxaliplatin prodrug liposomes and a low-dose BCG were co-delivered via a viscous chitosan solution (LRO-BCG/CS). LRO-BCG/CS addressed these challenges by significantly improving the retention capability and permeability of chemotherapy agents across the bladder wall. Then, oxaliplatin triggered the immunogenic cell death, and the combination of BCG simultaneously further activated the systemic anti-tumor immune response in the MB49 orthotopic bladder tumor model. As a result, LRO-BCG/CS demonstrated superior anti-tumor efficacy and prolonged the survival time of tumor-bearing mice significantly, even at relatively low doses of oxaliplatin and BCG. Importantly, this combinational chemo-immunotherapy showed negligible side effects, offering a promising and well-tolerated therapeutic strategy for bladder cancer patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call