Abstract

The purpose of the current study was to establish an in vitro model for osteoarthritis (OA) by co-culture of osteochondral and synovial membrane explants. Osteochondral explants were cultured alone (control-1) or in co-culture with synovial membrane explants (control-2) in standard culture medium or with interleukin-1β (IL1β) and tumor necrosis factor (TNFα) added to the culture medium (OA-model-1 = osteochondral explant; OA-model-2 = osteochondroal-synovial explant). In addition, in OA-model groups a 2-mm partial-thickness defect was created in the centre of the cartilage explant. Changes in the expression of extracellular matrix (ECM) genes (collagen type-1 (Col1), Col2, Col10 and aggrecan) as well as presence and quantity of inflammatory marker genes (IL6, matrix metalloproteinase-1 (MMP1), MMP3, MMP13, a disintegrin and metalloproteinase with-thrombospondin-motif-5 (ADAMTS5) were analysed by immunohistochemistry, qPCR and ELISA. To monitor the activity of classically-activated pro-inflammatory (M1) versus alternatively-activated anti-inflammatory/repair (M2) synovial macrophages, the nitric oxide/urea ratio in the supernatant of osteochondral-synovial explant co-cultures was determined. In both OA-model groups immunohistochemistry and qPCR showed a significantly increased expression of MMPs and IL6 compared to their respective control group. ELISA results confirmed a statistically significant increase in MMP1and MMP3 production over the culturing period. In the osteochondral-synovial explant co-culture OA-model the nitric oxide/urea ratio was increased compared to the control group, indicating a shift toward M1 synovial macrophages. In summary, chemical damage (TNFα, IL1β) in combination with a partial-thickness cartilage defect elicits an inflammatory response similar to naturally occurring OA in osteochondral explants with and without osteochondral-synovial explant co-cultures and OA-model-2 showing a closer approximation of OA due to the additional shift of synovial macrophages toward the pro-inflammatory M1 phenotype.

Highlights

  • Osteoarthritis (OA), a chronic degenerative joint disease characterized by cartilage breakdown, subchondral bone remodeling and synovial inflammation, is the most common musculoskeletal disorder in humans as well as in horses

  • There was no difference in overall collagen type-1 (Col1) and Col2 staining over time or between the four groups

  • There were no significant differences between the 2 control groups with the exception of their Col2 expression, which was significantly higher in control-2 compared to control-1

Read more

Summary

Introduction

Osteoarthritis (OA), a chronic degenerative joint disease characterized by cartilage breakdown, subchondral bone remodeling and synovial inflammation, is the most common musculoskeletal disorder in humans as well as in horses. Secondary to a variety of etiologic factors such as mechanical injury, genetics, ageing, gender and obesity, a common molecular pathway linking biochemical and biomechanical processes leads to the typical pathological progression of OA with an imbalance of cartilage matrix synthesis and degradation and a vicious positive feedback loop involving cartilage breakdown and synovial inflammation [1,2,3,4,5,6,7,8,9,10,11]. The NO/urea ratio reflects the M1/M2 polarization and can be used as a functional readout of their relative proportions [19, 20]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.