Abstract

The adsorption of CO on Pt group metals, as a most fundamental elementary reaction step, has been widely studied in catalysis and electrocatalysis. Particularly, the structures of CO on Pt(111) have been extensively investigated, owing to its importance to both fundamental and applied catalysis. Yet, much less is known regarding CO adsorption on a Pt(111) surface modulated by supported oxide nanostructures, which is of more relevance to technical catalysis. We thus investigated the coverage-dependent adsorption of CO on a Pt(111) surface partially covered by FeOx nanostructures, which has been demonstrated as a remarkable catalyst for low-temperature CO oxidation. We found that, due to its strong chemisorption, the coverage-dependent structure of CO on bare Pt is not influenced by the presence of FeOx. But, oxygen-terminated FeOx nanostructures could modulate the diffusivity of CO at their vicinity, and thus affect the formation of ordered CO superstructures at low temperatures. Using scanning tunneling microscopy (STM), we inspected the diffusivity of CO, followed the phase transitions of CO domains, and resolved the molecular details of the coverage-dependent CO structures. Our results provide a full picture for CO adsorption on a Pt(111) surface modulated by oxide nanostructures and shed lights on the inter-adsorbate interaction on metal surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.