Abstract
The relative natural abundance of potassium and potentially high energy density has established potassium-ion batteries as a promising technology for future large-scale global energy storage. However, the anodes' low capacity and high discharge platform lead to low energy density, which impedes their rapid development. Herein, we present a possible co-activation mechanism between bismuth (Bi) and tin (Sn) that enhances K-ion storage in battery anodes. The co-activated Bi-Sn anode delivered a high capacity of 634mAhg-1, with a discharge plateau as low as 0.35V, and operated continuously for 500 cycles at a current density of 50mA g-1, with a high Coulombic efficiency of 99.2%. This possible co-activation strategy for high potassium storage may be extended to other Na/Zn/Ca/Mg/Al ion battery technologies, thus providing insights into how to improve their energy storage ability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.