Abstract

We demonstrate that nanocrystalline diamond films grown on highly doped silicon substrates can be patterned using a CO2 laser operating at a wavelength of 10.6 μm, where both low doped silicon and diamond exhibit negligible optical absorption. The patterning is initiated by free carrier absorption in the silicon substrate and further enhanced by the thermal runaway effect, which results in surface heating in the silicon substrate and subsequent thermal ablation of the diamond film in an oxygen rich atmosphere. Using this approach, micron-scale grating and dot patterns are patterned in thin film diamond. The localized heating is simulated and analyzed using concurrent optical and thermal finite element modelling. The laser patterning method described here offers a cost effective and rapid solution for micro-structuring diamond films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.