Abstract

Black liquor gasification–combined cycle (BLGCC) is a new technology that has the potential to increase electricity production of a chemical pulping mill. Increased electricity generation in combination with the potential to use biomass (e.g. bark, hog fuel) more efficiently can result in increased power output compared to the conventional Tomlinson-boiler. Because the BLGCC enables an integrated pulp and paper mill to produce excess power, it can offset electricity produced by power plants. This may lead to reduction of the net-CO 2 emissions. The impact of BLGCC to offset CO 2 emissions from the pulp and paper industry is studied. We focus on two different plant designs and compare the situation in Sweden and the US. The CO 2 emissions are studied as function of the share of recycled fibre used to make the paper. The study shows that under specific conditions the production of “CO 2-free paper” is possible. First, energy efficiency in pulp and paper mills needs to be improved to allow the export of sufficient power to offset emissions from fossil fuels used in boilers and other equipment. Secondly, the net-CO 2 emission per ton of paper depends strongly on the emission reduction credits for electricity export, and hence on the country or grid to which the paper mill is connected. Thirdly, supplemental use of biomass to replace fossil fuel inputs is important to reduce the overall emissions of the pulp and paper industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.