Abstract
Cardiovascular disorders are among the primary causes of death. Regularly monitoring the heart is of paramount importance in preventing fatalities arising from heart diseases. Heart disease monitoring encompasses various approaches, including the analysis of heartbeat sounds. The auditory patterns of a heartbeat can serve as indicators of heart health. This study aims to build a new model for categorizing heartbeat sounds based on associated ailments. The Phonocardiogram (PCG) method digitizes and records heartbeat sounds. By converting heartbeat sounds into digital data, researchers are empowered to develop a deep learning model capable of discerning heart defects based on distinct cardiac rhythms. This study proposes the utilization of Mel-frequency cepstral coefficients for feature extraction, leveraging their application in voice data analysis. These extracted features are subsequently employed in a multi-step classification process. The classification process merges a convolutional neural network (CNN) with a long short-term memory network (LSTM), forming a comprehensive deep learning architecture. This architecture is further enhanced through optimization utilizing the Adagrad optimizer. To examine the effectiveness of the proposed method, its classification performance is evaluated using the "Heartbeat Sounds" dataset sourced from Kaggle. Experimental results underscore the effectiveness of the proposed method by comparing it with simple CNN, CNN with vanilla LSTM, and traditional machine learning methods (MLP, SVM, Random Forest, and k-NN).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: JOIV : International Journal on Informatics Visualization
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.