Abstract

This paper aims to solve the problem of large-scale video retrieval by a query image. Firstly, we define the problem of top-k image to video query. Then, we combine the merits of convolutional neural networks(CNN for short) and Bag of Visual Word(BoVW for short) module to design a model for video frames information extraction and representation. In order to meet the requirements of large-scale video retrieval, we propose a visual weighted inverted index(VWII for short) and related algorithm to improve the efficiency and accuracy of retrieval process. Comprehensive experiments show that our proposed technique achieves substantial improvements (up to an order of magnitude speed up) over the state-of-the-art techniques with similar accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.