Abstract
This paper describes the design, fabrication, and characterization of 0.1-µm-channel CMOS devices with dual n+/p+ polysilicon gates on 35-A gate oxide. A 2× performance gain over 2.5-V, 0.25-µm CMOS technology is achieved at a power supply voltage of 1.5 V. In addition, a 20× reduction in active power/circuit is obtained at a supply voltage of < 1 V with the same delay as the 0.25-micron CMOS. These results demonstrate the feasibility of high-performance and low-power room-temperature 0.1-µm CMOS technology. Beyond 0.1 µm, a number of fundamental device and technology issues must be examined: oxide and silicon tunneling, random dopant distribution, threshold voltage nonscaling, and interconnect delays. Several alternative device structures (in particular, low-temperature CMOS and double-gate MOSFET) for exploring the outermost limit of silicon scaling are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.