Abstract

This paper describes the application techniques of the latency insertion method (LIM) to CMOS circuit simulations. Though the existing LIM algorithm to CMOS circuit performs fast transient analysis, CMOS circuits are not modeled accurately. As a result, they do not provide accurate simulations. We propose a more accurate LIM scheme for the CMOS inverter circuit by adopting a more accurate model of the CMOS inverter characteristics. Moreover, we present the way to expand the LIM algorithm to general CMOS circuit simulations. In order to apply LIM to the general CMOS circuits which consist of CMOS NAND and NOR, we derive the updating formulas of the explicit form of the LIM algorithm. By using the explicit form of the LIM scheme, it becomes easy to take in the characteristics of CMOS NAND and NOR into the LIM simulations. As a result, it is confirmed that our techniques are useful and efficient for the simulations of CMOS circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.