Abstract

Given the general notion that dynamical downscaling leads to added accuracy in both historical simulations as well as climate change projections, this paper investigates its validity over India using historical data (1975–2005) from the CORDEX models and their driving global climate models (GCMs) from Coupled Model Intercomparison Project Phase 5 (CMIP5), and comparing them against observed temperature and rainfall. We find that downscaling invariably leads to an improvement in the spatial pattern of surface air temperature, but compared to the driving GCMs, the errors in magnitude after downscaling are even worse in some cases. In regard to JJAS rainfall simulations, the CMIP5 driving GCMs are found to be superior to their dynamically downscaled counterparts both in terms of spatial patterns as well as magnitude of errors. Both CMIP5 driving GCMs as well as the CORDEX models underestimate rainfall during JJAS; however, negative bias in CORDEX models is worse. Unlike the driving CMIP5 GCMs, their dynamically downscaled counterparts simulate an early onset followed by a slow and late withdrawal of the Indian summer monsoon rainfall. The frequency of occurrence of rainfall intensities is simulated well by both sets of models in the lower intensity regime (0–20 mm/day); however, for higher intensities, the driving CMIP5 GCMs underestimate whereas the CORDEX models overestimate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call