Abstract

Achieving stimulus-responsive performance in room-temperature phosphorescence (RTP) materials especially systems without classic conjugated groups is attractive and important but remains a great challenge. Herein we propose a universal approach to construct colors-tunable RTP supramolecular co-assemblies (AC@amino acid) with excitation wavelength-dependent properties through co-assembly of functional aminoclay (AC) and nonconjugated amino acid using environmentally friendly strategy. Experimental and theoretical results successfully disclose that the RTP feature is attributable to space conjugation through effective space electronic communications among different π and n (lone pair) electrons of amino acid molecules and the effective stabilization of their triplet state by AC. Meanwhile, their colors-tunable performances are mainly owing to the co-existence of clusters with different aggregates degree through recrystallization of amino acid taking AC as a template. Importantly, AC@amino acid exhibit sensitive stimulus response features towards water, yet their RTP performance can be maintained in other solvents, such as ethanol (EtOH). By virtue of this unique feature, multilevel information encryption application were demonstrated. This work provides a unique insight and more deep understanding on designing novel RTP systems without classic conjugated groups. Importantly, their extraordinary stimulus-responsive performances endow these RTP systems with a highly promising potential for intelligent information encryption applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call