Abstract
This paper introduces a cycle-based clustering technique using the cyclic spaces of reversible cellular automata (CAs). Traditionally, a cluster consists of close objects, which in the case of CAs necessarily means that the objects belong to the same cycle; that is, they are reachable from each other. Each of the cyclic spaces of a cellular automaton (CA) forms a unique cluster. This paper identifies CA properties based on “reachability” that make the clustering effective. To do that, we first figure out which CA rules contribute to maintaining the minimum intracluster distance. Our CA is then designed with such rules to ensure that a limited number of cycles exist in the configuration space. An iterative strategy is also introduced that can generate a desired number of clusters by merging objects of closely reachable clusters from a previous level in the present level using a unique auxiliary CA. Finally, the performance of our algorithm is measured using some standard benchmark validation indices and compared with existing well-known clustering techniques. It is found that our algorithm is at least on a par with the best algorithms existing today on the metric of these standard validation indices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.