Abstract
This paper presents a self-optimal clustering (SOC) technique which is an advanced version of improved mountain clustering (IMC) technique. The proposed clustering technique is equipped with major changes and modifications in its previous versions of algorithm. SOC is compared with some of the widely used clustering techniques such as K-means, fuzzy C-means, Expectation and Maximization, and K-medoid. Also, the comparison of the proposed technique is shown with IMC and its last updated version. The quantitative and qualitative performances of all these well-known clustering techniques are presented and compared with the aid of case studies and examples on various benchmarked validation indices. SOC has been evaluated via cluster compactness within itself and separation with other clusters. The optimizing factor in the threshold function is computed via interpolation and found to be effective in forming better quality clusters as verified by visual assessment and various standard validation indices like the global silhouette index, partition index, separation index, and Dunn index.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.