Abstract
Data representations based on Symmetric Positive Definite (SPD) matrices are gaining popularity in visual learning applications. When comparing SPD matrices, measures based on non-linear geometries often yield beneficial results. However, a manual selection process is commonly used to identify the appropriate measure for a visual learning application. In this paper, we study the problem of clustering SPD matrices while automatically learning a suitable measure. We propose a novel formulation that jointly (i) clusters the input SPD matrices in a K-Means setup and (ii) learns a suitable non-linear measure for comparing SPD matrices. For (ii), we capitalize on the recently introduced αβ-logdet divergence, which generalizes a family of popular similarity measures on SPD matrices. Our formulation is cast in a Riemannian optimization framework and solved using a conjugate gradient scheme. We present experiments on five computer vision datasets and demonstrate state-of-the-art performance.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have