Abstract

The analysis of change within subjects over time is an ever more important research topic. Besides modelling the individual trajectories, a related aim is to identify clusters of subjects within these trajectories. Various methods for analyzing these longitudinal trajectories have been proposed. In this paper we investigate the performance of three different methods under various conditions in a Monte Carlo study. The first method is based on the non-parametric k-means algorithm. The second is a latent class mixture model, and the third a method based on the analysis of change indices. All methods are available in R. Results show that the k-means method performs consistently well in recovering the known clustering structure. The mixture model method performs reasonably well, but the change indices method has problems with smaller data sets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.