Abstract

To address important challenges in bioinformatics, high throughput data technologies are needed to interpret biological data efficiently and reliably. Clustering is widely used as a first step to interpreting high dimensional biological data, such as the gene expression data measured by microarrays. A good clustering algorithm should be efficient, reliable, and effective, as demonstrated by its capability of determining biologically relevant clusters. This paper proposes a new minimum spanning tree based heuristic B-MST, that is guided by an innovative objective function: the tightness and separation index (TSI). The TSI presented here obtains biologically meaningful clusters, making use of co-expression network topology, and this paper develops a local search procedure to minimize the TSI value. The proposed B-MST is tested by comparing results to: (1) adjusted rand index (ARI), for microarray data sets with known object classes, and (2) gene ontology (GO) annotations for data sets without documented object classes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call