Abstract

We present a clustering-based preconditioning strategy for KKT systems arising in stochastic programming within an interior-point framework. The key idea is to perform adaptive clustering of scenarios (inside-the-solver) based on their influence on the problem at hand. This approach thus contrasts with existing (outside-the-solver) approaches that cluster scenarios based on problem data alone. We derive spectral and error properties for the preconditioner and demonstrate that scenario compression rates of up to 94 % can be obtained, leading to dramatic computational savings. In addition, we demonstrate that the proposed preconditioner can avoid scalability issues of Schur decomposition in problems with large first-stage dimensionality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.