Abstract

AbstractThis chapter presents a comprehensive decision support system for addressing the generation planning and operation. It is hierarchically divided into three planning horizons: long, medium, and short term. This functional hierarchy requires that decisions taken by the upper level model will be internalized by the lower level model. With this approach, the position of the company is globally optimized. This set of models presented is specially suited for hydrothermal systems. The models described correspond to long-term stochastic market planning, medium-term stochastic hydrothermal coordination, medium-term stochastic hydro simulation, and short-term unit commitment and bidding. In the chapter it is provided a condensed description of each model formulation and their main characteristics regarding modeling detail of each subsystem. The mathematical methods used by these models are mixed complementarity problem, multistage stochastic linear programming, Monte Carlo simulation, and multistage stochastic mixed integer programming. The algorithms used to solve them are Benders decomposition for mixed complementarity problems, stochastic dual dynamic programming, and Benders decomposition for SMIP problems.KeywordsElectricity competitionMarket modelsPlanning toolsPower generation scheduling

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.