Abstract

In this study, we utilized unsupervised machine learning techniques to examine the relationship between different symptoms in cases who died of COVID-19 and cases who recovered from it. First, our data was cleared of redundancies, and the ten most important variables were selected using a filter-based technique (extra-tree classifier). Next, we calculated the Silhouette, Davis Boldin (DB), and the mean intra-cluster distance measures to select the optimal number of clusters, then clustered the data using both the K-means and hierarchical clustering based on Self Organizing Map (SOM) neural network. Our results revealed that patients who died of COVID-19 had high mean values in different symptoms, but not all patients with this characteristic necessarily died. Besides, our result indicated that the patient's age is directly related to the hospital duration, and elderly patients are more likely to be assigned to the intensive care unit (ICU). However, the patient's sex has the same distribution in different groups and does not correlate with other symptoms. In conclusion, our results confirmed past studies. Also, this research helps physicians improve medical services by considering other important factors for treating different groups of COVID-19 patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.