Abstract

We study cluster synchronization of networks and propose a canonical transformation for simultaneous block diagonalization of matrices that we use to analyze the stability of the cluster synchronous solution. Our approach has several advantages as it allows us to: (1) decouple the stability problem into subproblems of minimal dimensionality while preserving physically meaningful information, (2) study stability of both orbital and equitable partitions of the network nodes, and (3) obtain a parameterization of the problem in a small number of parameters. For the last point, we show how the canonical transformation decouples the problem into blocks that preserve key physical properties of the original system. We also apply our proposed algorithm to analyze several real networks of interest, and we find that it runs faster than alternative algorithms from the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call