Abstract

The main motivation for this paper is to characterize network synchronizability for the case of cluster synchronization (CS), in an analogous fashion to Barahona and Pecora [Phys. Rev. Lett. 89, 054101 (2002)] for the case of complete synchronization. We find this problem to be substantially more complex than the original one. We distinguish between the two cases of networks with intertwined clusters and no intertwined clusters and between the two cases that the master stability function is negative either in a bounded range or in an unbounded range of its argument. Our proposed definition of cluster synchronizability is based on the synchronizability of each individual cluster within a network. We then attempt to generalize this definition to the entire network. For CS, the synchronous solution for each cluster may be stable, independent of the stability of the other clusters, which results in possibly different ranges in which each cluster synchronizes (isolated CS). For each pair of clusters, we distinguish between three different cases: Matryoshka cluster synchronization (when the range of the stability of the synchronous solution for one cluster is included in that of the other cluster), partially disjoint cluster synchronization (when the ranges of stability of the synchronous solutions partially overlap), and complete disjoint cluster synchronization (when the ranges of stability of the synchronous solutions do not overlap).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.