Abstract

The cluster state model for quantum computation [Phys. Rev. Lett. \textbf{86}, 5188] outlines a scheme that allows one to use measurement on a large set of entangled quantum systems in what is known as a cluster state to undertake quantum computations. The model itself and many works dedicated to it involve using entangled qubits. In this paper we consider the issue of using entangled qudits instead. We present a complete framework for cluster state quantum computation using qudits, which not only contains the features of the original qubit model but also contains the new idea of adaptive computation: via a change in the classical computation that helps to correct the errors that are inherent in the model, the implemented quantum computation can be changed. This feature arises through the extra degrees of freedom that appear when using qudits. Finally, for prime dimensions, we give a very explicit description of the model, making use of mutually unbiased bases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call