Abstract

Cluster randomized trials (CRTs) are increasingly used to assess the effectiveness of health interventions. Three main analysis approaches are: cluster-level analyses, mixed-models and generalized estimating equations (GEEs). Mixed models and GEEs can lead to inflated type I error rates with a small number of clusters, and numerous small-sample corrections have been proposed to circumvent this problem. However, the impact of these methods on power is still unclear. We performed a simulation study to assess the performance of 12 analysis approaches for CRTs with a continuous outcome and 40 or fewer clusters. These included weighted and unweighted cluster-level analyses, mixed-effects models with different degree-of-freedom corrections, and GEEs with and without a small-sample correction. We assessed these approaches across different values of the intraclass correlation coefficient (ICC), numbers of clusters and variability in cluster sizes. Unweighted and variance-weighted cluster-level analysis, mixed models with degree-of-freedom corrections, and GEE with a small-sample correction all maintained the type I error rate at or below 5% across most scenarios, whereas uncorrected approaches lead to inflated type I error rates. However, these analyses had low power (below 50% in some scenarios) when fewer than 20 clusters were randomized, with none reaching the expected 80% power. Small-sample corrections or variance-weighted cluster-level analyses are recommended for the analysis of continuous outcomes in CRTs with a small number of clusters. The use of these corrections should be incorporated into the sample size calculation to prevent studies from being underpowered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.