Abstract

Cluster perturbation theory is a technique for calculating the spectral weight of Hubbard models of strongly correlated electrons, which combines exact diagonalizations on small clusters with strong-coupling perturbation theory at leading order. It is exact in both the strong- and weak-coupling limits and provides a good approximation to the spectral function at any wavevector. Following the paper by S\'en\'echal et al. (Phys. Rev. Lett. {\bf 84}, 522 (2000)), we provide a more complete description and derivation of the method. We illustrate some of its capabilities, in particular regarding the effect of doping, the calculation of ground state energy and double occupancy, the disappearance of the Fermi surface in the $t-t'$ Hubbard model, and so on. The method is applicable to any model with on-site repulsion only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.