Abstract

A new harmonic oscillator (HO) expansion method for calculation of the non-relativistic ground state energy of the Coulomb non-identical three-particle systems is presented. The HO expansion basis with different size parameters in the Jacobi coordinates instead of only one unique oscillator length parameter in the traditional treatment is introduced. This method is applied to calculate the ground state energy of a number of Coulomb three-particle systems for up to 28 excitation HO quanta. The obtained results suggest that the HO basis with different size parameters in the Jacobi coordinates could lead to significant increasing of the rate of convergence for the ground state energy than in the traditional approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.