Abstract

The cyclic lipodepsipeptide, syringomycin E, when incorporated into planar lipid bilayer membranes, forms two types of channels (small and large) that are different in conductance by a factor of sixfold. To discriminate between a cluster organization-type channel structure and other possible different structures for the two channel types, their ionic selectivity and pore size were determined. Pore size was assessed using water-soluble polymers. Ion selectivity was found to be essentially the same for both the small and large channels. Their reversal (zero current) potentials with the sign corresponding to anionic selectivity did not differ by more than 3 mV at a twofold electrolyte gradient across the bilayer. Reduction in the single-channel conductance induced by poly(ethylene glycol)s of different molecular weights demonstrated that the aqueous pore sizes of the small and large channels did not differ by more than 2% and were close to 1 nm. Based on their virtually identical selectivity and size, we conclude that large syringomycin E channels are clusters of small ones exhibiting synchronous opening and closing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.