Abstract

The study describes the incorporation of solid silica into molten glass during glass-batch melting as a function of the grain size in the range from 5 to 275 µm. Whereas tiny grains formed a bubbly melt, very large grains formed slowly dissolving clusters. Silica grains are forced to clusters by rising bubbles. The impact of the silica grain size on the glass-forming melt viscosity, overall density, thermal conductivity, and compositional homogeneity, as well as the consequences of these effects on glass processing in melting furnaces, is discussed. A high-alumina borosilicate glass for nuclear waste vitrification was chosen for the study, but the authors believe that the observed behaviors also occur in the melting of commercial batches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.