Abstract

This paper describes a simulation method for the equivalent magnetic permeability of mangetorheological (MR) fluids considering cluster formation of suspended particles. The cluster formation under a magnetic field is simulated by cellular automata (CA). Simulated cluster structures are qualitatively equivalent to those observed experimentally. Considering this structure, magnetic permeability analysis is conducted on a representative MR fluid by the finite element method. The equivalent permeability in the MR fluid was obtained from the average magnetic flux density and field. The time evolution of the magnetic characteristics of the MR fluid is shown to correspond to the time evolution of cluster formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call