Abstract

Abstract Cluster-based scheduling is recently gaining importance to be applied to mixed-criticality real-time systems on multicore processors platform. In this approach, the cores are grouped into clusters, and tasks that are partitioned among different clusters are scheduled by global scheduler in each cluster. This research work introduces a new cluster-based task allocation scheme for the mixed-criticality real-time task sets on multicore processors. For task allocation, smaller clusters sizes (sub-clusters) are used for mixed-criticality tasks in low criticality mode, while relatively larger cluster sizes are used for high criticality tasks in high criticality mode. In this research paper, the mixed-criticality task set is allocated to clusters using worst-fit heuristic. The tasks from each cluster are also allocated to its sub-clusters, using the same worst-fit heuristic. A fixed-priority response time analysis approach based on Audsley’s approach is used for the schedulability analysis of tasks in each cluster and sub-cluster. If the high criticality job is not completed after its worst case execution time in low mode, then the system is switched to high criticality mode. After mode switch, all the low criticalities tasks are discarded and only high criticality tasks are further executed in high criticality mode. Simulation results indicate that the percentage of schedulable task sets significantly increases under cluster scheduling as compared to partitioned and global mixed-criticality scheduling schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.