Abstract
Paralytic shellfish poisoning (PSP) is one of the most lethal biotoxin-induced diseases worldwide, which may pose serious public health threat and potential devastating economic damage on fisheries industry in the affected region(s). To prevent the importation of PSP contaminated shellfish to a community, detailed documentation on the supply chain and routine surveillance systems are, in principle, crucial measures to protect people from this intoxication. However, difficulties have always been encountered on the traceability of the source/origin of contaminated shellfish.In the present study, we reported the potential application of PSP-toxins profiles with similarity analysis that can be used to identify epidemiological linkage between shellfish samples collected from markets and patients during a PSP outbreak. PSP-toxins were identified and quantified by ion-pair chromatographic separation followed by post-column oxidation to fluorescent imino purine derivatives. Samples from a PSP incident and other surveillance samples collected in our past 7-year record were also compared for their similarity in PSP-toxins profiles patterns. Molar distributions (nmol%) of 10 PSP-toxins were analyzed by Unweighted Pair Group Method with Arithmetric averages (UPGMA). Three prominent clusters emerged with similarity levels reaching over 80% for each, suggesting that each group of samples probably originated from a same source/batch. The PSP-toxins profiles and toxicities determined from surveillance samples could provide premonitory clues on the occurrences of PSP incident and outbreak with corresponding toxin profiles in the later time. Due to species-specific characteristics of PSP-toxins composition and profile in shellfish under varieties of environmental and physiological conditions, PSP-toxins profile can be a specific and useful biochemical indicator for tracing PSP contaminated shellfish provided that spatio-temporal occurrence patterns of toxins profiles are available in a databank for inter-laboratory comparison and standardized methodologies such as consentaneous toxins extraction and identification criteria are used for analysis and comparison.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.