Abstract
For a Markov transition kernel P and a probability distribution μ on nonnegative integers, a time-sampled Markov chain evolves according to the transition kernel \(P_{\mu} = \sum_k \mu(k)P^k.\) In this note we obtain CLT conditions for time-sampled Markov chains and derive a spectral formula for the asymptotic variance. Using these results we compare efficiency of Barker’s and Metropolis algorithms in terms of asymptotic variance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.