Abstract

This paper describes various computer system workloads and relates them to their underlying resource utilization. Specifically, the paper concentrates on Cloud workload characterization based upon issues, capabilities, and technologies surrounding the categories from the multiple points of view of the various players involved in Cloud Computing. The relationship is established between the categories and key limiting underlying technologies, and the dynamic and measurable low-level metrics and measurements that are used to detect and reduce resource contention, and identify category changes during run-time. Research questions are posed on dynamic low-level measurements and a usage case example with high performance computing (HPC) clusters. The Cloud workload categories can provide a basis for common communication for various viewpoints from players, including facility managers, Cloud IT or service providers, Cloud users, consumers, IT managers, and hardware vendors. This common communication tool will facilitate better service-level agreements (SLAs), capital purchase decisions, and future computer architecture design-decisions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.