Abstract
As a basic property of cloud, accurate identification of cloud type is useful in forecasting the evolution of landfalling typhoons. Millimeter-wave cloud radar is an important means of identifying cloud type. Here, we develop a fuzzy logic algorithm that depends on radar range-height-indicator (RHI) data and takes into account the fundamental physical features of different cloud types. The algorithm is applied to a ground-based Ka-band millimeter-wave cloud radar. The input parameters of the algorithm include average reflectivity factor intensity, ellipse long axis orientation, cloud base height, cloud thickness, presence/absence of precipitation, ratio of horizontal extent to vertical extent, maximum echo intensity, and standard variance of intensities. The identified cloud types are stratus (St), stratocumulus (Sc), cumulus (Cu), cumulonimbus (Cb), nimbostratus (Ns), altostratus (As), altocumulus (Ac) and high cloud. The cloud types identified using the algorithm are in good agreement with those identified by a human observer. As a case study, the algorithm was applied to typhoon Khanun (1720), which made landfall in south-eastern China in October 2017. Sequential identification results from the algorithm clearly reflected changes in cloud type and provided indicative information for forecasting of the typhoon.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have