Abstract

Abstract Cloud trails are primarily thermally forced bands of cloud that extend downwind of small islands. A novel algorithm to classify conventional geostationary visible-channel satellite images as cloud trail (CT), nontrail (NT), or obscured (OB) is defined. The algorithm is then applied to the warm season months of five years at Bermuda comprising 16 400 images. Bermuda’s low elevation and location make this island ideal for isolating the role of the island thermal contrast on CT formation. CTs are found to occur at Bermuda with an annual cycle, peaking in July, and a diurnal cycle that peaks in midafternoon. Composites of radiosonde observations and ERA-Interim data suggest that a warm and humid low-level environment is conducive for CT development. From a Lagrangian perspective, wind direction modulates CT formation by maximizing low-level heating on local scales when winds are parallel to the long axis of the island. On larger scales, low-level wind direction also controls low-level humidity through advection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.