Abstract
The general circulation model (GCM) used in this study includes a prognostic cloud scheme and a rather detailed radiation scheme. In a preceding paper, we showed that this model was more sensitive to a global perturbation of the sea surface temperatures than most other models with similar physical parametrization. The experiments presented here show how this feature might depend on some of the cloud modelling assumptions. We have changed the temperature at which the water clouds are allowed to become ice clouds and analyzed separately the feedbacks associated with the variations of cloud cover and cloud radiative properties. We show that the feedback effect associated with cloud radiative properties is positive in one case and negative in the other. This can be explained by the elementary cloud radiative forcing and has implications concerning the use of the GCMs for climate sensitivity studies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have