Abstract

The compatibility behaviour of poly(vinyl methyl ether) (PVME) and monodisperse polystyrene (PS) is studied for solution cast films. The molecular weight of monodisperse PS ranges from 2100 to 2 000 000 whereas the PVME used is polydisperse and has weight-average molecular weight of 51 500. When cast from toluene solution, the mixtures undergo phase separation at elevated temperatures. The cloud point curves move to markedly lower temperatures with increasing molecular weight which is similar to the lower critical solution temperature ( LCST) behaviour for polymer solutions. They move to lower temperatures until the molecular weight of PS reaches about 51 500. The effect of molecular weight distribution on the cloud point of equal amounts of PS and PVME mixtures simulated by mixing two monodisperse polystyrenes of different molecular weight for PS part is accurately predicted by using weight-average molecular weight for PS in this range. However, if the molecular weight of PS exceeds about 110 000 the molecular weight dependence of cloud point temperature is reversed and the prediction for polydisperse polymer by using weight-average molecular weight fails. This phenomenon is discussed from several viewpoints including the possibility of the effect of chain entanglement. Mixtures of PVME and PS of M w = 20 400 were also cast from an ‘incompatible’ solvent, trichloroethylene. Compatibility is found to be dependent on composition and even phase-separated samples show at least one cloud point, indicating at least partial mixing of the two polymers. Finally, it is demonstrated that crosslinking of compatible films can be achieved by electron irradiation to form true interpenetrating networks. The cloud point temperatures are increased drastically after crosslinking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.