Abstract
AbstractThe background error covariance (B) behaves differently and needs to be carefully defined in cloudy areas due to larger uncertainties caused by models’ inability to correctly represent complex physical processes. This study proposes a new cloud-dependent B strategy by adaptively adjusting the hydrometeor-included B in the cloudy areas according to the cloud index (CI) derived from the satellite-based cloud products. The adjustment coefficient is determined by comparing the error statistics of B for the clear and cloudy areas based on the two-dimensional geographical masks. The comparison highlights the larger forecast errors and manifests the necessity of using appropriate B in cloudy areas. The cloud-dependent B is then evaluated by a series of single observation tests and three-week cycling assimilation and forecasting experiments. The single observation experiments confirm that the cloud-dependent B allows cloud dependency for the multivariate analysis increments and alleviates the discontinuities at the cloud mask borders by treating the CI as an exponent. The impact study on regional numerical weather prediction (NWP) demonstrates that the application of the cloud-dependent B reduces analyses and forecasts bias and increases precipitation forecast skills. Diagnostics of a heavy rainfall case indicate that the application of the cloud-dependent B enhances the moisture, wind, and hydrometeors analyses and forecasts, resulting in more accurate forecasts of accumulated precipitation. The cloud-dependent piecewise analysis scheme proposed herein is extensible, and a more precise definition of CI can improve the analysis, which deserves future investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.